Computation of Numerical Padé-Hermite and Simultaneous Padé Systems I: Near Inversion of Generalized Sylvester Matrices
نویسندگان
چکیده
Abstract. We present new formulae for the “near” inverses of striped Sylvester and mosaic Sylvester matrices. The formulae assume computation over floating-point rather than exact arithmetic domains. The near inverses are expressed in terms of numerical Padé-Hermite systems and simultaneous Padé systems. These systems are approximants for the power series determined from the coefficients of the Sylvester matrices. The inverse formulae provide good estimates for the condition numbers of these matrices, and serve as primary tools in a companion paper for the development of a fast, weakly stable algorithm for the computation of Padé-Hermite and simultaneous Padé systems and, thereby, also for the numerical inversion of striped and mosaic Sylvester matrices.
منابع مشابه
Computation of Numerical Padé-Hermite and Simultaneous Padé Systems II: A Weakly Stable Algorithm
For k + 1 power series a0(z), . . . , ak(z), we present a new iterative, look-ahead algorithm for numerically computing Padé-Hermite systems and simultaneous Padé systems along a diagonal of the associated Padé tables. The algorithm computes the systems at all those points along the diagonal at which the associated striped Sylvester and mosaic Sylvester matrices are wellconditioned. The operati...
متن کاملAnalysis of Magneto-hydrodynamics Jeffery-Hamel Flow with Nanoparticles by Hermite-Padé Approximation
The combined effects of nanoparticle and magnetic field on the nonlinear Jeffery-Hamel flow are analyzed in the present study. The basic governing equations are solved analytically to nonlinear ordinary differential equation using perturbation method together with a semi-numerical analytical technique called Hermite- Padé approximation. The obtained results are well agreed with that of the Adom...
متن کاملAlgebraic properties of robust Padé approximants
For a recent new numerical method for computing so-called robust Padé approximants through SVD techniques, the authors gave numerical evidence that such approximants are insensitive to perturbations in the data, and do not have so-called spurious poles, that is, poles with a close-by zero or poles with small residuals. A black box procedure for eliminating spurious poles would have a major impa...
متن کاملHow well does the Hermite-Padé approximation smooth the Gibbs phenomenon?
In order to reduce the Gibbs phenomenon exhibited by the partial Fourier sums of a periodic function f , defined on [−π, π], discontinuous at 0, Driscoll and Fornberg considered so-called singular Fourier-Padé approximants constructed from the Hermite-Padé approximants of the system of functions (1, g1(z), g2(z)), where g1(z) = log(1 − z) and g2(z) is analytic, such that Re (g2(e)) = f(t). Conv...
متن کاملComputing minimal interpolation bases
We consider the problem of computing univariate polynomial matrices over a field that represent minimal solution bases for a general interpolation problem, some forms of which are the vector M-Padé approximation problem in [Van Barel and Bultheel, Numerical Algorithms 3, 1992] and the rational interpolation problem in [Beckermann and Labahn, SIAM J. Matrix Anal. Appl. 22, 2000]. Particular inst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 17 شماره
صفحات -
تاریخ انتشار 1996